图片展示
图片展示
图片展示

​中国AI医疗行业报告

发表时间: 2019-09-25 10:53:54

浏览: 196

中国AI医疗行业报告 


一、AI医疗概述


1.人工智能

人工智能已经发展了大半个世纪,经历几次大起大落。从上世纪80年代到本世纪初,人们对于深度学习探索较多,但受制于计算机的计算能力,以及算法本身的限制,效果不太好,直到2006年,Hinton解决了神经网络的大量参数训练的问题。从2009年开始人工智能飞速发展。2015年、2017年,两场世界瞩目的人机围棋大赛之后,人们对人工智能的认识将进一步的加深。而AlphaGo用于下围棋的高效算法是一种通用型的算法,这种算法可以推广到其他算法,把人工智能运用到各个领域。


2、深度学习,智能时代的核心驱动力量

世界十大人工智能科学家之一Terrence Sejnowski曾在“The Deep Learning Revolution ”一书中提出AI医疗。“随着机器学习的成熟并被应用于可获取大数据的许多其他问题,服务行业和其相关职业也将发生转变。基于数百万患者病情记录的医学诊断将变得更加准确。最近的一项研究将深度学习运用到了囊括超过2000种不同疾病的13万张皮肤病学图像中,这个医学数据库是以前的10倍大。该研究的网络被训练用于诊断“测试集”(testset)中的各种疾病。它在新图像上的诊断表现与21位皮肤科专家的结论基本一致,甚至在某些情况下还要更准确”。

除了应用于皮肤病诊断领域之外,AI还可用于提高癌症诊断准确度,“一个经过大量结论清晰的切片数据训练出来的深度学习网络能达到0.925的准确度,还不错,把深度学习与人类专家的预测结合起来,准确度达到了0.995,几近完美。”

除了对疾病的诊断,AI医疗可以基于数据采集分析应用于睡眠监测、临床护理、慢性病监测等各种医疗领域。


3、AI+医疗

AI赋能医疗。人工智能医疗简单说即以互联网为依托,通过基础设施的搭建及数据的收集,将人工智能技术及大数据服务应用于医疗行业中,提升医疗行业的诊断效率及服务质量


二、AI医疗应用背景


1、医疗资源分布不均,人工智能弥补劳动力短缺我国医疗资源分配严重不均,优质的医疗设备和医护资源大多集中在发达城市与地区,而使得大量外地病患由于在本地得不到良好的医疗,转而向大城市、大医院集中。

根据***卫计委数据,截止至2018年11月底,我国共有医院32476个,其中三级医院仅有2498家,占7.69%; 然而,三级医院就诊人数(截止至2018年11月)却达到16.46亿人次,占全国总人次的50.97%。医疗资源供需明显不匹配


2、AI医疗利好政策落地

从2006年起,***多次颁布人工智能相关政策。

2016年6月《关于促进和规范健康医疗大数据应用发展的指导意见》中明确提出健康医疗大数据是***重要的基础性战略资源,需要规范和推动医疗大数据融合共享、开放应用。

人工智能医疗器械创新合作平台成立—距离正式向AI企业发布《深度学习辅助决策医疗器械软件审批要点》仅半月,药监局再次展开了AI器械审批相关的大动作。7月17日,人工智能医疗器械创新推进会在京展开,大会之上,人工智能医疗器械创新合作平台在此成立。该平台以构建开放协同共享的人工智能医疗器械创新体系,形成服务于科学监管、科技创新、产品转化的人工智能医疗器械创新合作平台为目标愿景,将全力推动医学人工智能产品审批。

合作平台在数据库建立方向提出:数据库的建立是人工智能产品审批的先行之举,过去仅存在肺结节和眼底两类影像,而且未确定测试数据库的类型。


本次会议上,从宏观层面上讲述了数据库的建立路径,主要包含以下三点:

1). 将申康医联大数据基础上,建立起可高效用于人工智能研究和研发的专用“人工智能+医学影像类系统的审评技术及专业数据库”的标准、规范管理条例以及伦理学标准。

2). 开展示范应用,以不断改进和提升“人工智能+医学影像类系统的审评技术及专业数据库”。

3). 在此基础上建成“人工智能+医学影像类系统的审评技术及专业数据库” ,为全国大规模应用推广建立基础。平台的成立有利于人工智能在医疗领域的落地。AI的赋能将给医疗行业带来全新的发展动力。


3、5G商用推动智能终端发展

人工智能是一个“云端大脑”,而5G则是一条“信息高速公路”。依靠“高速公路”带来的信息和数据,人工智能才能不断学习和演化,完成机器智能化进程。5G可分别从数据、时效和算力为人工智能技术提供更好的支撑基础,大幅促进其各类终端使用场景的落地和应用。5G将激发诸如智能网联汽车、远程医疗手术等各类创新应用,补齐制约人工智能发展的短板,极大拓展AI应用场景,5G与人工智能共同引发智能终端产业下一轮技术和创新变革。

5G应用将极大提升数据传输速度,提升诊断报告生成速度与准确率。


三、AI医疗八大应用场景


1、疾病风险管理与预测

疾病风险预测是指通过基因测序与检测,提前预测疾病发生的风险。疾病风险预测核心解决的问题是预测个体在未来一段时间内患某种疾病或(发生某种事件)的风险概率。疾病预测会根据某个人群定义,例如全人群、房颤人群、心梗住院人群等,针对某个预测目标,例如脑卒中、心衰、死亡等,设定特定的时间窗口,包括做出预测的时间点,和将要预测的时间窗,预测目标的发生概率。


2、医学影像

医学影像,是目前人工智能在医疗领域最热门的应用场景之一。目前国内共有40余家公司提供“医学影像”服务。“医学影像”应用场景下,主要运用计算机视觉技术解决病灶识别与标注、靶区自动勾画与自适应放疗、影像三维重建三种需求。


3、医院管理

医院管理,主要指针对医院内部、医院之间各项工作的管理,主要包括病历结构化、分级诊疗、DRGs(诊断相关分类)智能系统、医院决策支持的专家系统等。在分级诊疗的政策推动之下,国内陆续出现促进分级诊疗的企业服务,行业前景广阔。分级诊疗的实现,离不开医联体与智能云服务,二者相辅相成。


4、辅助诊疗

除医学影像以外,“AI+辅助诊疗”的产品还有两大类:医疗大数据辅助诊疗、医疗机器人(主要指针对诊断与治疗环节的机器人)。医疗机器人主要包括手术机器人、肠胃检查与诊断机器人、康复机器人等。我国在医疗机器人的研究与政策支持方面,都具有良好的发展环境。目前国内致力于手术机器人的公司主要采用两种业务模式:***种,面向医院进行机器人产品的单独销售,并提供长期维修服务;第二种,是为医院提供手术中心整体工程解决方案。国外,IBM和Google均已布局辅助诊疗,并构建完整系统。IBM Watson for Oncology 是基于认知计算(读懂大数据背后的含义)的医疗大数据辅助诊疗解决方案,为全球***将认知计算运用于医疗临床工作中。Google研发的DeepMind Health系统将机器学习和系统神经科学结合,通过强大的通用学习算法模拟构建人脑神经网络,以便更好的解决医疗保健问题;DeepMind系统于2016年在英国的一家医院使用。


5、虚拟助理

医疗领域中的虚拟助理,基于特定领域的知识系统,通过智能语音技术和自然语言处理技术,实现人机交互,将患者的病症描述与标准的医学指南作对比,为用户提供医疗咨询、自诊、导诊等服务。


6、健康管理

“健康管理”应用场景,主要包含营养学、身体健康管理、精神健康管理三大子场景。目前国内共有14家公司提供“健康管理”服务,公司大多集中于身体健康管理场景。企业包括:妙健康、碳云智能、橙意家人、人和未来、解码DNA、时云医疗等。


7、辅助医学研究平台

辅助医学研究平台,是利用人工智能技术辅助生物医学相关研究者进行医学研究的技术平台。2014年以来,***卫计委、国务院先后出台相关文件,鼓励医疗机构及医生进行科学研究。


8、药物挖掘与研究

传统的药物研发存在研发周期长、研发成本高、研发成功率低等痛点。人工智能与药物挖掘的结合,使得新药研发时间大大缩短,研发成本大大降低;这将有可能根本上改变用药“平均”观念。





2015.03.08
2016.06.07
2017.6月-8月
2017.12.13
2017.12.29
2018-1-5
2018-4-17
2018-10-30
2019-5-10
2019.12.02

北京医然制冷设备有限公司   河北壹壹叁科技有限公司

山东医然冷链科技有限公司   北京叁壹玖环保科技有限公司

电话:400-600-4550/400-100-3143/400-900-3143

地址:北京市大兴区团结路19号院20号

 

医然中文域名:  医然.手机          GSP.手机     GMP.手机         CFDA.手机   

                            冷链技术.手机    冷柜.手机     中国器械.手机

 

服务热线:400-660-4550/400-100-3143/400-900-3143

在线客服
联系方式
联系电话
15650752319
服务热线
400-660-4550
在线客服